

ergy in lot

Advances in vibrational energy harvesting for applications in IoT

Prof. Saibal Roy

Head of Micropower Systems and Nanomagnetics Group

Tyndall National Institute, Cork, Ireland

Advances in vibrational energy harvesting for applications in IoT

Different Transduction Methods Studies

Electrostatic	Piezoelectric	Electromagnetic	
These are based on changing capacitances that plates will undergo due to vibration.	A potential difference occurs in Piezoelectric materials under strain.	Based on Faraday's Law, when a conductor moves through a magnetic field, a potential difference is induced.	
3 mm			
 High o/p voltage at low operational voltage High impedance values > matching network, design complexity, extra power loss 	 Active materials for fabrication High output Voltage Low output Current 	 Do not need any extra component like electret. Output current is high but voltage is low 	

Vibration Energy Harvesting

- Mechanical vibration energy converted into useable electrical energy.
- Systems are based on mass-spring-damper topologies.
 - Resonance optimal condition for maximum energy conversion
 - Transduction mechanisms: electrostatic, piezoelectric, electromagnetic

Comparison of vibration based linear power generators-EU project:

'VIBES' (In collaboration with University of Southampton)

Highest Normalized Power $NPD = \frac{P}{A^2 V}$ Density

P- Stated power, A- acceleration, V- volume

EM-VEH in an autonomous sensor module

Measurement Science & Tech, **19**, 125202 (2008)

BBC technology news <u>http://news.bbc.co.uk/2/hi/technology/6272752.stm</u>

State	Time	Avg. Power	Energy/cycle
Ref. Voltag	je 68 µs	1.95 mW	133 nJ
Sensor reading	32.7 ms	1.62 mW	51.9 µJ
Transmit	9 ms	2.4 mW	10.8 µJ
Sleep mod	le 3.24 s	0.784 µW	2.54 µJ
Total duty cycle	y 3.28 s	21.3 µW	65 µJ

Vibration Sources – low frequency

Broadband, Random, Noise

Wideband VEH

Nonlinear Energy Harvesting

Nonlinearity introduced through modified stiffness of the devices → **broader frequency response**

Miniaturized Nonlinear EMPG Systems

Monostable Nonlinear EMPG

- Monostable nonlinearity from stretching strain in addition to bending of fixed-fixed beams.
- <u>0.5 mW</u> of peak power under 0.5g acceleration

Bistable Nonlinear EMPG

- Bistable nonlinearity from magnetic repulsive interaction.
- <u>29µW</u> of power under 0.5g acceleration.

Combined Effect – Multiple Nonlinearity

- Monostable and Bistable nonlinearity combined in a single device
- Engineered potential energy for better performance
- 107.2 μW and 1403 $\mu W\,$ at accelerations of 0.2g and 1g respectively.

UK Patent & PCT Filed (2015 & 2016): S. Roy, P. Podder, D. Mallick, A. Amman; The effect of multiple nonlinearity on the performance of a vibrational energy harvester.

MEMS EM Energy Harvesters - Integration

Process steps for Integrated coil fabrication

Top view of fabricated Integrated coils

MEMS EM Energy Harvesters - Integration

Double Layer Cu Coil Process Flow

$1\mu m SiO_2$ layer, sputtered Cu (200nm) & Ti (20nm) seed layers.	AZ9260 resist layer (18.6μm) patterned for coil layer 1.	Coil plate to 15 μm using digital matrix plating line	AZ9260 resist layer (38µm) patterned for via	Via plate by 10µm and etch seed layers
		60 60		Copper Titanium
SU-8 resist layer (28µm) patterned for insulation layer.	Sputtered Cu (200nm) & Ti (20nm) seed layers & AZ9260 resist layer (19µm) patterned for coil layer 2.	Coil plate by 12.5 μm and etch seed layers.	SU-8 resist layer (28µm) patterned for protection layer.	SI + SIO ₂ AZ-9260 SU-8

Fabricated Coils

Coil Properties	
Track Widths / inter track gaps	8-15µm
Aspect Ratio	1 → 2
Number turns	up to 150

MEMS EM Energy Harvesters - Integration

1 mm

(a)

D

Micro-EMVEH using more SOI spring topologies

□ Silicon-on-insulator springs have been fabricated in the Central Fabrication Facility, Tyndall National Institute using MEMS fabrication process.

□ Square and circular planar micro-coils and micro-magnets are to be used to assemble VEH.

MEMS Fabricated Nonlinear EM-VEH

MEMS Nonlinear EMPG (Stretching):

Nonlinear Wideband Operation

• Bandwidth – <u>82 Hz @ 0.5g</u> (one of the highest reported in literature)

Nonlinear Hysteresis

Frequency Domain Response

- Multiple steady state solutions -Hysteresis
- How to operate in the frequency varying environment?

-0.4

-4

-2

0 Displacement (m)

(c)

Blue – Low Energy

2

Basin of Attraction Plots within Hysteresis

0 Displacement (m)

(d)

x 10⁻⁴

-0.4

Red – High Energy

x 10⁻⁴

Surfing the High Energy Branch (I)

- Maintains steady state without continuous energy input
- Method independent of device scale or transduction methods

D. Mallick, A. Amman, S. Roy, Phys. Rev. Lett., 119, 197701 (2016)

Surfing the High Energy Branch (II)

E₀ - Energy required to apply switching signal once

- **P**_s **Probability of successful switching in first attempt**
- \mathbf{E}_{T} Total energy spent to switch the state
- k Number of attempts

$$E_T = P_S E_0 \sum_{k=1}^{\infty} k(1 - P_S)^{k-1} = \frac{E_0}{P_S}$$

As P_s ~ 0.8, E_T - not very high

Summary of Demonstrator Performance

Demonstrator	Mechanism	Volume (cm ³)	Frequency (Hz)	Bandwidth (Hz)	Acceleration	Peak Power (µW)
	Linear	4.38	58.6	1-2 Hz	0.5g, 0.1g	1153, 73.5
All Andrews	Monostable nonlinearity	4.38	58	10 Hz @ 0.5g	0.8g, 0.3g	1330, 383.4
- ARA	Combined bistable and monostable nonlinearity	7.2	65.8	10 Hz @ 0.5g	1g, 0.2g	1403, 107.2
A MARINE	Bistable nonlinearity	2.56	35.2	6.2 Hz @ 0.5g	0.5g, 0.2g	29.2, 14.5
	MEMS/ Magnetically tunable	0.11	230	12 Hz @ 0.125g	0.125g	8.45
	MEMS/ Monostable nonlinearity	0.14	630	82 Hz @ 0.5g	0.5g	2.5
	3D Printed/ Softening Monostable nonlinearity	6	150	4.5Hz@ 1g	1g, 0.1g	2500, 250

Application Environment

Acknowledgement

<u>People</u> Dhiman Mallick Pranay Podder Peter Constantinou Andreas Amann Tuhin Maity Joe O'Brien

Funding Bodies

EU FP 7- Network of Excellence- 'Nanofunction' - 257375

SFI PI Grant Award- 'MEMS EM & Hybrid vibrational energy harvesters' – 11/PI/1201

More details & full list of publications visit : <u>www.tyndall.ie</u> – email: saibal.roy@tyndall.ie

